
U.S. — One young student athlete's years of hard work were finally set to pay off, as a college football player prepared to achieve his lifelong dream of playing in the Duke's Mayo Bowl brought to you by Duke's Mayo.

U.S. — One young student athlete's years of hard work were finally set to pay off, as a college football player prepared to achieve his lifelong dream of playing in the Duke's Mayo Bowl brought to you by Duke's Mayo.

This isn't to make fun of the ladies.

Remember when the whole banking system almost crashed when Bill Clinton's sub-prime mortgage disaster caught up to us in 2008?
pip. It's not nearly as simple as just "they rewrote it in Rust" - uv gets to skip a huge amount of Python packaging history (which pip needs to implement for backwards compatibility) and benefits enormously from work over recent years that makes it possible to resolve dependencies across most packages without having to execute the code in setup.py using a Python interpreter.
Two notes that caught my eye that I hadn't understood before:
HTTP range requests for metadata. Wheel files are zip archives, and zip archives put their file listing at the end. uv tries PEP 658 metadata first, falls back to HTTP range requests for the zip central directory, then full wheel download, then building from source. Each step is slower and riskier. The design makes the fast path cover 99% of cases. None of this requires Rust.
[...]
Compact version representation. uv packs versions into u64 integers where possible, making comparison and hashing fast. Over 90% of versions fit in one u64. This is micro-optimization that compounds across millions of comparisons.
I wanted to learn more about these tricks, so I fired up an asynchronous research task and told it to checkout the astral-sh/uv repo, find the Rust code for both of those features and try porting it to Python to help me understand how it works.
Here's the report that it wrote for me, the prompts I used and the Claude Code transcript.
You can try the script it wrote for extracting metadata from a wheel using HTTP range requests like this:
uv run --with httpx https://raw.githubusercontent.com/simonw/research/refs/heads/main/http-range-wheel-metadata/wheel_metadata.py https://files.pythonhosted.org/packages/8b/04/ef95b67e1ff59c080b2effd1a9a96984d6953f667c91dfe9d77c838fc956/playwright-1.57.0-py3-none-macosx_11_0_arm64.whl -v
The Playwright wheel there is ~40MB. Adding -v at the end causes the script to spit out verbose details of how it fetched the data - which looks like this.
Key extract from that output:
[1] HEAD request to get file size...
File size: 40,775,575 bytes
[2] Fetching last 16,384 bytes (EOCD + central directory)...
Received 16,384 bytes
[3] Parsed EOCD:
Central directory offset: 40,731,572
Central directory size: 43,981
Total entries: 453
[4] Fetching complete central directory...
...
[6] Found METADATA: playwright-1.57.0.dist-info/METADATA
Offset: 40,706,744
Compressed size: 1,286
Compression method: 8
[7] Fetching METADATA content (2,376 bytes)...
[8] Decompressed METADATA: 3,453 bytes
Total bytes fetched: 18,760 / 40,775,575 (100.0% savings)
The section of the report on compact version representation is interesting too. Here's how it illustrates sorting version numbers correctly based on their custom u64 representation:
Sorted order (by integer comparison of packed u64):
1.0.0a1 (repr=0x0001000000200001)
1.0.0b1 (repr=0x0001000000300001)
1.0.0rc1 (repr=0x0001000000400001)
1.0.0 (repr=0x0001000000500000)
1.0.0.post1 (repr=0x0001000000700001)
1.0.1 (repr=0x0001000100500000)
2.0.0.dev1 (repr=0x0002000000100001)
2.0.0 (repr=0x0002000000500000)
Tags: performance, python, rust, uv

If you're having a ruff day, this might cheer you up:

It’s 2025 and you are applying for a software engineer position. They give you a test assignment. You complete it yourself, send it over, and get rejected. Why?
Because it looked like AI.
Unfortunately, it’s 2025, AI is spreading like glitter in a kindergarten, and it’s really easy to mistake hard human labor for soulless, uninspired machine slop.
Following are the main red flags in test assignments that should be avoided:
Avoid these AI giveaways and spread the word!